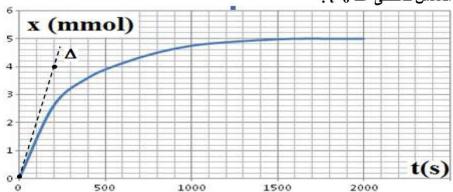


تمرين 1 (7ن)

الليكول 1% ( Lugol 1%) مادة مطهرة تباع في الصيدليات مكونها الأساسي هو تنائي اليود (Lugol 1، نذكر أن محلول ثنائي اليود يتميز باللون البني.

عند درجة الحرارة C 25°C نغمر قطعة من الزنك Zn كتلتها m=2g في كأس يحتوي على حجم V=140mL من سائل الليكول، فيحدث تحول كيميائي بين تنائي اليود والزنك يمكن نمذجته بالمعادلة الكيميائية التالية:


$$I_2(aq) + Zn(s) \rightarrow 2I^-(aq) + Zn^{+2}(aq)$$

0- حدد المزدوجتين مختزل / مؤكسد المتدخلتين في هذا التفاعل . (0,5)

1-انشىء الجدول الوصفى للتحول المدروس. (5,0ن)

2- اذكر طريقتين يمكن بها تتبع تطور هذا التحول مع التعليل. (1ن)

3- بتقنية تتبع مناسبة للتحول تمكننا من رسم المنحنى تقدم التفاعل بدلالة الزمن (x=f(t) - المنحنى اسفله - مع المستقيم ∆ يمثل المستقيم المماس للمنحنى عند t=0.



1-1- التأكد من النسبة %1 التي تشير إليها لصيقة المادة المطهرة – الليكول -.

(1ن). هو المتفاعل  $X_{max}$  و بين ان تنائي اليود  $I_{2(aq)}$  هو المتفاعل  $X_{max}$ 

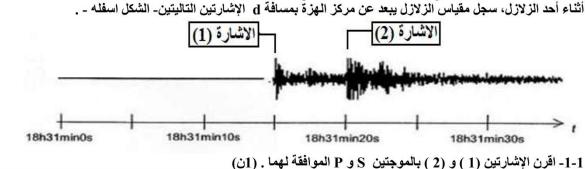
2-1-3- احسب (m(I2) كتلة تنائى المتواجد بالعينة المدروسة وبين انه لا تمثل سوى 1% من الكتلة الإجمالية . (1ن)

2-3- السرعة الحجمية للتحول.

1-2-3 عرف السرعة الحجمية للتفاعل، واحسب قيمتها عند (1ن). t=0s . (1ن)

2-2-2 كيف تتغير السرعة الحجمية للتفاعل؟ أعط تفسيرا لذلك. (1ن)

3-2-3 عرف زمن نصف التفاعل وحدد قيمته بالنسبة لهذا التفاعل ؟ (1ن)


معطيات: الكتل المولية: M(Zn)=65,4g/mol; M(I2)=253,8g/mol

ρ = 0,888 g/L : ( Lugol )الكتلة الحجمية لليكول

تمرين 2 (6 نقط)

- 1- عند حدوث الزلازل ينتشر نوعيين من الموجات:
- P موجات طولية تنتشر في الأوساط الصلبة والسائلة، تنتشر بسرعة P .
- $V_{S}$  موجات مستعرضة تنتشر في الأوساط الصلبة فقط في جميع الحالات، تنتشر بسرعة  $V_{S}$  .

تنطلق الموجتين من نفس المنبع و تكون الموجات P أسرع من الموجات S.



(0,5) . P و S التأخر الزمني بين تسجيل الموجتين S و S . (5,0ن)

 $d=rac{V_{S}.V_{P}}{V_{D}-V_{S}}$  .  $\Delta t$  : يين أن تعبير d المسافة الفاصلة بين مركز الهزة و مكان تسجيلها يكتب على الشكل التالي  $d=\frac{V_{S}.V_{P}}{V_{D}-V_{S}}$ 

احسب المسافة d . (1,5)

 $v_s = 3.5 \text{ km.s}^{-1} : S$  سرعة الموجة  $v_p = 6.0 \text{ km.s}^{-1}$  : P معطيات

2- غالبا ما تحدث الزلازل التي تقع اسفل المحيطات ظاهرة طبيعية تدعى تسونامي ، و هي عبارة عن موجات تنتشر على سطح المحيط لتصل الى الشواطئ بطاقة عالية و مدمرة.

ننمدج ظاهرة تسونامي بموجات ميكانيية متوالية دورية تنتشر على سطح الماء بسرعة v تتغير مع عمق المحيط h و فق العلاقة التالية  $v=\sqrt{g.\,h}$  في حالة المياه القليلة العمق مقارنة مع طول الموجة ( $\lambda>>h$ ) حيث  $v=\sqrt{g.\,h}$  شدة الثقالة و  $\lambda$  طول  $g=10m/s^2$  الموجة . نعطى

ندرس انتشار موجة تسونامي في جزء من المحيط نعتبر عمقه تابثا h=6000m.

2-1- احسب ٧ سرعة انتشار للموجات الميكانيكية المنتشرة على سطح الماء في هذا الجزء من المحيط. (1ن)

 $_{2-2-}$  علما ان المدة الزمنية الفاصلة بين دروتين متتاليتين هي  $_{1}$   $_{1}$  ، اوجد طول الموجة  $_{1}$  . (1 $_{1}$ 

3-2- في الحالة ( $\lambda > h$ ) يبقى تردد موجة تسونامي ثابتا خلال انتشارها نحو الشاطئ، كيف يتغير طول الموجة  $\lambda$  عند الاقتراب من الشاطئ ؟ علل جوابك . (1ن)

تمرین 03 (6 ن)

⊕ يبعث صمام لازر S حزمة ضوء أحادى اللون طول موجته λ ، يخترق الضوء المنبعث من β شقا مستطيلا ضيقا و افقيا عرضه  $a=0.10~\mathrm{mm}$  ، نشاهد على شاشة ، توجد على بعد D =2 m من الشق ، بقعا ضوئية تتوسطها بقعة مركزية عرضها L=1,4cm

1- اختر الجواب الصحيح:

يوجد شكل الحيود الملاحظ على الشاشة : (0,5ن) أ- وفق المحور x'x ب- وفق المحور y'y 2- ارسم شكل الظاهرة، و بين أن تعبير الفرق الزاوي في حالة الزويا الصغيرة يتكب على شكل :  $oldsymbol{ heta}$  التصغيرة يتكب على شكل التحديد الصغيرة يتكب على

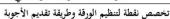
(0.75) .  $\lambda$  طول الموجة بدلالة a و  $\Delta$  و  $\Delta$  ، احسب قيمة  $\lambda$ 

برد على الوجه المستوى لنصف الاسطوانة من زجاج  $m N_1=3,8.10^{14}Hz$  برد على الوجه المستوى لنصف الاسطوانة من زجاج  $m N_1=3,8.10^{14}Hz$ شفاف عند النقطة I مركز هذا الوجه المستوى تحت زاوية ورود ٥٥-١ . ينكسر الشعاع (R1) عند النقطة I و يرد على شاشة رأسية عند النقطة B (انظر الشكل جانبه)

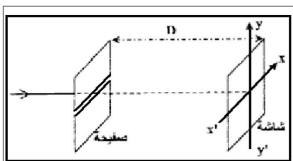
⊗ نجعل شعاعا ضوئيا (R₂) احادي اللون تردده يرد على الوجه المستوى لنصف  $N_2=7,5.10^{14}Hz$ الاسطونة السابقة عند النقطة I مركز هذا الوجه المستوي تحت نفس زاوية ورود  $i=60^\circ$  . ينكسر الشعاع ( $R_2$ ) عند النقطة I و يرد على الشاشة الرأسية عند النقطة A و ( $\mathbf{R}_2$ ) و عند الوجه ( $\mathbf{R}_1$ ) و الوجه الوجه

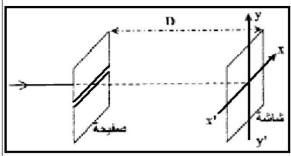
الكروي لنصف الاسطوانة. (1ن)

(01) .  $(R_1)$  الشعاع الضوئى  $(R_1)$  . (10) $(R_1)$  علما آن الزاوية بين الشعاعين المنكسرين هي  $\alpha=0.563^{\circ}$ ، بين أن معامل انكسار الزجاج ( $R_2$ )


بالنسبة للشعاع الضوئي ( $R_2$ ) ذي التردد  $N_2$  هو  $R_2$ . (1ن)

6- اوجد تعبير طول الموجة  $\chi_2$  للشعاع الضوئي ( $\chi_2$ ) ذي التردد  $\chi_2$  في الزجاج بدلالة  $\chi_2$  و  $\chi_2$  احسب  $\chi_3$  (1ن)  $n_1 = 1,626$  هو  $N_1$  معطيات - معامل انكسار الزجاج بالنسبة للشعاع الضوئي ذي التردد


الشاشة


 $n_0=1.00$  هو  $n_0=1.00$  - معامل انكسار الهواء

 $C=3.10^8 \text{m/s}$  هي الفراغ (الهواء) هي - سرعة انتشار الضوء في الفراغ



و الله ولى التوفيق





نصف الأسطوال