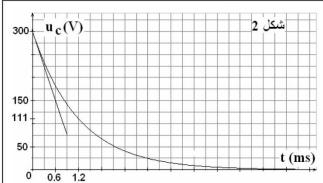


يناير 2016

التمرين 1: (10 ن)

نقرأ على لصيقة آلة تصوير العبارات التالية (احذر $_$ خطر $_$ تفادي تفكيك الآلة). يرتبط هذا النتبيه بوجود مكثف في علبة آلة التصوير،الذي يتم شحنه تحت توتر U=300V عبر موصل أومي مقاومته R. نحصل على التوتر U=300V بفضل تركيب إلكتروني مغذى بعمود قوته الكهرمحركة $E_0=1,5V$ وعند أخذ الصور يُفرغ المكثف عبر مصباح وامض آلة التصوير خلال جزء من الثانية، فيُمكن الوامض ذي المقاومة T من إضاءة شديدة في وقت جد قصير.

يمثل الشكل (1) التركيب المبسط لدارة تشغيل وامض آلة التصوير.


استنتج
$$u_{\rm C}$$
 تکتب علی الشکل $u_{\rm C}$ = U استنتج $u_{\rm C}(t)$ تعبیر ثابتة الزمن τ بدلالة بر امترات الدارة.

- . حدد قيمة u_C في النظام الدائم.
- 4.1. أحسب Ee الطاقة الكهربائية المخزونة في المكثف في النظام الدائم.
- 5.1. يتطلب الاشتغال العادي للوامض طاقة كهربائية محصورة بين 5J و 6J . هل يمكن شحن المكثف مباشرة بو اسطة العمود ذي القوة الكهرمحركة $E_0 = 1,5$ ؟

2. استجابة ثنائي القطب RC لرتبة توتر نازلة

نؤرجح قاطع التيار K إلى الموضع (2) عند اللحظة ذات التاريخ (t=0)، فيفرغ المكثف عبر الموصل

شكل 1

الأومي ذي المقاومة r . نسجل بواسطة الأومي ذي المقاومة r . نسجل بواسطة راسم تنبذب ذاكراتي تغيرات التوتر $u_{\rm C}(t)$ بين مربطي المكثف بدلالة الزمن، فنحصل على المنحنى الممثل في الشكل (2).

- 1.2 مثل بعناية تبيانة تركيب تفريغ المكثف، وبين عليها كيفية ربط راسم التذبذب.
- au2.2. عين مبيانيا قيمة ثابتة الزمن auلدارة التفريغ.
 - 3.2. استنتج قيمة r.

يناير 2016

التمرين 2: (4ن)

نضيف إلى $150 \mathrm{mL}$ من الماء المقطر حجما $V_0 = 100 \mathrm{mL}$ من محلول S_0 لحمض البنزويك $C_0 = 100 \mathrm{mL}$ تركيزه C_1 ، فنحصل على محلول C_1 تركيزه C_1 تركيزه C_1 ، فنحصل على محلول C_1 القيمة: C_1 القيمة: DH = 3,1 المحلول DH المحلول D

- 1- احسب التركيز C1 للمحلول S1.
- 2- بين أن حمض البنزويك حمض ضعيف و اكتب معادلة تأينه في الماء.
 - S_1 في المحلول T_1 في المحلول S_1
- . $C_6H_5COOH/C_6H_5COO^-$ للمزدوجة K_A للمزدوجة الحمية المحمضية المحمض
- . S_1 في المحلول الذوع الكيميائي المهيمن ($C_6H_5COO^-$ أم $C_6H_5COO^+$) في المحلول . S_1
 - S_0 أوجد قيمة نسبة التقدم τ_0 في المحلول S_0 .
 - 7- حدد تأثير تخفيف المحلول على نسبة التقدم النهائي.

التمرين 3: (6ن)

نذيب كتلة v=250m من الفينول C_6H_5OH في حجم v=250m من محلول هيدروكسيد الصوديوم $Na^+_{(aq)}+HO^-_{(aq)}$

عند التوازن يكون pH المحلول المحصل هو: pH = 10,3 وتركيز الفينول المتبقي هود pH = 10,3 عند pH = 10,3

- 1- أنشئ جدول تقدم التفاعل الحاصل. واستنتج تركيز أيونات الفينولات $C_6H_5O^-$ عند لتوازن.
 - $C_6H_5OH/C_2H_5O^{-}$ حدد القيمة العددية للثابتة pK_A للمزدوجة -2
 - 3- احسب قيمة ثابتة التوازن K للتفاعل بين الفينول و هيدروكسيد الصوديوم.
 - 4- احسب نسبة التقدم النهائي لهذا التفاعل. استنتج.

 $M(C) = 12 g.mol^{-1} : M(O) = 16 g.mol^{-1} : M(H) = 1,0 g.mol^{-1}$ نعطي الكتل المولية $K_{\epsilon} = 10^{-14} : 25^{\circ}C$ الجداء الأيوني للماء عند $25^{\circ}C$ الجداء الأيوني للماء عند